158 research outputs found

    Normalized STEAM-based diffusion tensor imaging provides a robust assessment of muscle tears in football players: preliminary results of a new approach to evaluate muscle injuries

    Get PDF
    Objectives: To assess acute muscle tears in professional football players by diffusion tensor imaging (DTI) and evaluate the impact of normalization of data. Methods: Eight football players with acute lower limb muscle tears were examined. DTI metrics of the injured muscle and corresponding healthy contralateral muscle and of ROIs drawn in muscle tears (ROItear) in the corresponding healthy contralateral muscle (ROIhc_t) in a healthy area ipsilateral to the injury (ROIhi) and in a corresponding contralateral area (ROIhc_i) were compared. The same comparison was performed for ratios of the injured (ROItear/ROIhi) and contralateral sides (ROIhc_t/ROIhc_i). ANOVA, Bonferroni corrected post-hoc and Students t-tests were used. Results: Analyses of the entire muscle did not show any differences (p>0.05 each) except for axial diffusivity (AD; p=0.048). ROItear showed higher mean diffusivity (MD) and AD than ROIhc_t (p<0.05). Fractional anisotropy (FA) was lower in ROItear than in ROIhi and ROIhc_t (p<0.05). Radial diffusivity (RD) was higher in ROItear than in any other ROI (p<0.05). Ratios revealed higher MD and RD and lower FA and reduced number and length of fibre tracts on the injured side (p<0.05 each). Conclusions: DTI allowed a robust assessment of muscle tears in athletes especially after normalization to healthy muscle tissue. Key Points STEAM-based DTI allows the investigation of muscle tears affecting professional football players. Fractional anisotropy and mean diffusivity differ between injured and healthy muscle areas. Only normalized data show differences of fibre tracking metrics in muscle tears. The normalization of DTI-metrics enables a more robust characterization of muscle tears.(VLID)475075

    Impairment of chondrocyte biosynthetic activity by exposure to 3-tesla high-field magnetic resonance imaging is temporary

    Get PDF
    The influence of magnetic resonance imaging (MRI) devices at high field strengths on living tissues is unknown. We investigated the effects of a 3-tesla electromagnetic field (EMF) on the biosynthetic activity of bovine articular cartilage. Bovine articular cartilage was obtained from juvenile and adult animals. Whole joints or cartilage explants were subjected to a pulsed 3-tesla EMF; controls were left unexposed. Synthesis of sulfated glycosaminoglycans (sGAGs) was measured by using [(35)S]sulfate incorporation; mRNA encoding the cartilage markers aggrecan and type II collagen, as well as IL-1ÎČ, were analyzed by RT–PCR. Furthermore, effects of the 3-tesla EMF were determined over the course of time directly after exposure (day 0) and at days 3 and 6. In addition, the influence of a 1.5-tesla EMF on cartilage sGAG synthesis was evaluated. Chondrocyte cell death was assessed by staining with Annexin V and TdT-mediated dUTP nick end labelling (TUNEL). Exposure to the EMF resulted in a significant decrease in cartilage macromolecule synthesis. Gene expression of both aggrecan and IL-1ÎČ, but not of collagen type II, was reduced in comparison with controls. Staining with Annexin V and TUNEL revealed no evidence of cell death. Interestingly, chondrocytes regained their biosynthetic activity within 3 days after exposure, as shown by proteoglycan synthesis rate and mRNA expression levels. Cartilage samples exposed to a 1.5-tesla EMF remained unaffected. Although MRI devices with a field strength of more than 1.5 T provide a better signal-to-noise ratio and thereby higher spatial resolution, their high field strength impairs the biosynthetic activity of articular chondrocytes in vitro. Although this decrease in biosynthetic activity seems to be transient, articular cartilage exposed to high-energy EMF may become vulnerable to damage

    Real-time motion and retrospective coil sensitivity correction for CEST using volumetric navigators (vNavs) at 7T

    Get PDF
    Purpose To explore the impact of temporal motion-induced coil sensitivity changes on CEST-MRI at 7T and its correction using interleaved volumetric EPI navigators, which are applied for real-time motion correction. Methods Five healthy volunteers were scanned via CEST. A 4-fold correction pipeline allowed the mitigation of (1) motion, (2) motion-induced coil sensitivity variations, Delta B1-, (3) motion-induced static magnetic field inhomogeneities, Delta B-0, and (4) spatially varying transmit RF field fluctuations, Delta B1+. Four CEST measurements were performed per session. For the first 2, motion correction was turned OFF and then ON in absence of voluntary motion, whereas in the other 2 controlled head rotations were performed. During post-processing Delta B1- was removed additionally for the motion-corrected cases, resulting in a total of 6 scenarios to be compared. In all cases, retrospective increment B-0 and -Delta B1+ corrections were performed to compute artifact-free magnetization transfer ratio maps with asymmetric analysis (MTRasym). Results Dynamic Delta B1- correction successfully mitigated signal deviations caused by head motion. In 2 frontal lobe regions of volunteer 4, induced relative signal errors of 10.9% and 3.9% were reduced to 1.1% and 1.0% after correction. In the right frontal lobe, the motion-corrected MTRasym contrast deviated 0.92%, 1.21%, and 2.97% relative to the static case for Delta omega = 1, 2, 3 +/- 0.25 ppm. The additional application of Delta B1- correction reduced these deviations to 0.10%, 0.14%, and 0.42%. The fully corrected MTRasym values were highly consistent between measurements with and without intended head rotations. Conclusion Temporal Delta B1- cause significant CEST quantification bias. The presented correction pipeline including the proposed retrospective Delta B1- correction significantly reduced motion-related artifacts on CEST-MRI.Peer reviewe

    The MOCART (Magnetic Resonance Observation of Cartilage Repair Tissue) 2.0 Knee Score and Atlas

    Get PDF
    Objective Since the first introduction of the MOCART (Magnetic Resonance Observation of Cartilage Repair Tissue) score, significant progress has been made with regard to surgical treatment options for cartilage defects, as well as magnetic resonance imaging (MRI) of such defects. Thus, the aim of this study was to introduce the MOCART 2.0 knee score — an incremental update on the original MOCART score — that incorporates this progression. Materials and Methods The volume of cartilage defect filling is now assessed in 25% increments, with hypertrophic filling of up to 150% receiving the same scoring as complete repair. Integration now assesses only the integration to neighboring native cartilage, and the severity of surface irregularities is assessed in reference to cartilage repair length rather than depth. The signal intensity of the repair tissue differentiates normal signal, minor abnormal, or severely abnormal signal alterations. The assessment of the variables "subchondral lamina," "adhesions," and "synovitis" was removed and the points were reallocated to the new variable "bony defect or bony overgrowth." The variable "subchondral bone" was renamed to "subchondral changes" and assesses minor and severe edema-like marrow signal, as well as subchondral cysts or osteonecrosis-like signal. Overall, a MOCART 2.0 knee score ranging from 0 to 100 points may be reached. Four independent readers (two expert readers and two radiology residents with limited experience) assessed the 3 T MRI examinations of 24 patients, who had undergone cartilage repair of a femoral cartilage defect using the new MOCART 2.0 knee score. One of the expert readers and both inexperienced readers performed two readings, separated by a four-week interval. For the inexperienced readers, the first reading was based on the evaluation sheet only. For the second reading, a newly introduced atlas was used as an additional reference. Intrarater and interrater reliability was assessed using intraclass correlation coefficients (ICCs) and weighted kappa statistics. ICCs were interpreted according to Koo and Li; weighted kappa statistics were interpreted according to the criteria of Landis and Koch. Results The overall intrarater (ICC = 0.88, P < 0.001) as well as the interrater (ICC = 0.84, P < 0.001) reliability of the expert readers was almost perfect. Based on the evaluation sheet of the MOCART 2.0 knee score, the overall interrater reliability of the inexperienced readers was poor (ICC = 0.34, P < 0.019) and improved to moderate (ICC = 0.59, P = 0.001) with the use of the atlas. Conclusions The MOCART 2.0 knee score was updated to account for changes in the past decade and demonstrates almost perfect interrater and intrarater reliability in expert readers. In inexperienced readers, use of the atlas may improve interrater reliability and, thus, increase the comparability of results across studies

    A comparison of 7 Tesla MR spectroscopic imaging and 3 Tesla MR fingerprinting for tumor localization in glioma patients

    Full text link
    This paper investigates the correlation between magnetic resonance spectroscopic imaging (MRSI) and magnetic resonance fingerprinting (MRF) in glioma patients by comparing neuro-oncological markers obtained from MRSI to T1/T2 maps from MRF. Data from 12 consenting patients with gliomas were analyzed by defining hotspots for T1, T2 and various metabolic ratios, and comparing them using S{\o}rensen-Dice Similarity Coefficients (DSCs) and the distances between their centers of intensity (COIDs). Median DSCs between MRF and the tumor segmentation were 0.73 (T1) and 0.79 (T2). The DSCs between MRSI and MRF were highest for Gln/tNAA (T1: 0.75, T2: 0.80, tumor: 0.78), followed by Gly/tNAA (T1: 0.57, T2: 0.62, tumor: 0.54) and tCho/tNAA (T1: 0.61, T2: 0.58, tumor: 0.45). The median values in the tumor hotspot were T1=1724 ms, T2=86 ms, Gln/tNAA=0.61, Gly/tNAA=0.28, Ins/tNAA=1.15, and tCho/tNAA=0.48, and, in the peritumoral region, were T1=1756 ms, T2=102ms, Gln/tNAA=0.38, Gly/tNAA=0.20, Ins/tNAA=1.06, and tCho/tNAA=0.38, and, in the NAWM, were T1=950 ms, T2=43 ms, Gln/tNAA=0.16, Gly/tNAA=0.07, Ins/tNAA=0.54, and tCho/tNAA=0.20. The results of this study constitute the first comparison of 7T MRSI and 3T MRF, showing a good correspondence between these methods.Comment: Includes 3 tables, 6 figures, 3 supplementary tables, and 4 supplementary figure

    A method for unwrapping highly wrapped multi-echo phase images at very high field: UMPIRE

    No full text
    Purpose To develop a method of unwrapping phase images from multi-echo scans that works even where there are several wraps between echoes, and which generates unwrapped phase images in addition to phase difference (PD) images. Theory The difference between the echo spacings in an acquisition with three unevenly spaced echoes (an imposed delay) can be selected such that the phase evolution in that time is in the range -π to +π in all voxels of interest. Under this condition, an image of the difference between the phase evolutions in the two inter-echo periods, an estimate of ΔB, is free of wraps. This ΔB estimate can be used to identify and remove receiver phase offsets and wraps in phase images. Methods The approach was tested on simulated data and high-resolution in vivo brain data acquired from six subjects at 7 Tesla. Results The method generated wrap-free phase images. It was able to remove more wraps than is possible with PD imaging and was faster and more reliable than spatial unwrapping. Conclusion Unwrapping Multi-echo Phase Images with iRregular Echo spacings (UMPIRE) is conceptually simple, fast, reliable, and requires no fitting, thresholds, or operator intervention
    • 

    corecore